
Digging Into IDAPI Part 2
by John O’Connell

Last month I introduced you to
the concept of cursor and

record properties. Let’s take a
closer look at cursor properties
and assess the usefulness of each
individual property. Table 1 lists
them all.

We used the iSeqNums property
last month to retrieve a record’s
number for local tables. Many of
the property names are self ex-
planatory but let’s discuss a few of
the more useful properties.

Bookmarks
The bBookMarkStable property indi-
cates whether or not bookmarks
can be relied upon to identify the
correct position of a bookmarked
record despite any changes to the
table. Bookmarks are stable with
dBase tables and tables with a
primary key/index; bookmarks are
not stable with Paradox heap
tables, that is, tables without a pri-
mary key/index. You can experi-
ment with this yourself by writing
a simple database application con-
taining a TTable, TDatasource,
TDBGrid and TDBNavigator, then add
two TButton controls whose
OnClick handlers allow you to set a
bookmark (using the method
TTable.GetBookmark) and move to
that previously set bookmark
(using TTable.GotoBookmark). Now
run the application, set a book-
mark anywhere in the table, delete
the bookmarked record and then
move to any other record. If your
table is a keyed Paradox table or a
dBase table, moving to the book-
mark will raise a Record/key
deleted exception; if your table is a
Paradox heap table then moving to
the bookmark will simply move to
the record previously positioned
after the deleted record. In general,
unstable bookmarks point to an
absolute record position in a table
rather than to a particular record,
therefore new and deleted records
may affect the bookmark. To illus-
trate this, try setting a bookmark
on the last record of a Paradox

heap table, delete the record and
then move to the bookmark – see
what happens? Stable bookmarks
are guaranteed to position the
cursor at the correct record unless
it has been deleted.

When an index is activated on
the table, any previously set book-
marks become invalid: moving to
such a bookmark will at best raise
an exception, at worst the view of
the table will be corrupted. This
behaviour occurs because activat-
ing an index changes the book-
mark’s size as retrieved from the
iBookMarkSize cursor property. If
the bookmark size has changed,
any previously set bookmarks
become invalid and cannot be
used.

But what exactly is a bookmark?
The Delphi type TBookmark is actu-
ally a pointer to a string of bytes in
which bookmark data is stored:
this data contains internal IDAPI
information about the current po-
sition of the cursor. To get a book-
mark for the current record the
Delphi programmer simply calls
TTable.GetBookmark which returns a
TBookmark, but the BDE program-
mer must first call DbiGetCursor-
Props to retrieve the size of the
desired bookmark, then allocate a
bookmark buffer of iBookMarkSize
bytes and finally call DbiGetBook-
Mark, passing the cursor handle and
a pointer to the bookmark buffer,
which gets filled with bookmark
data by the function call. This
bookmark buffer is the same as a
TBookmark.

We can compare bookmarks (set
within the same active index) with
a call to DbiCompareBookmarks:

function DbiCompareBookMarks(
 hCur: hDBICur; pBookMark1:
 Pointer; pBookMark2:
 Pointer; var CmpBkmkResult :
 Word): DBIResult;

by passing a TTable Handle and the
TBookmarks to be compared. For
example:

var BkMk1, BkMk2: TBookmark;
 CmpResult: Word;
begin
 ...
 BkMk1 := Table1.GetBookmark;
 Table1.MoveBy(20);
 BkMk2 := Table1.GetBookmark;
 Check(DbiCompareBookmarks(
 Table1.Handle, BkMk1,
 BkMk2, CmpResult));
 ...
end;

The return value in CmpResult will
be CMPLess if BkMk1 is before BkMk2,
CMPEql if BkMk1 is the same as BkMk2,
CMPGtr if BkMk1 is after BkMk2, or
CMPKeyEql when BkMk1 and BkMk2
have the same key value. A call to
this function can be useful when
you’re programmatically navigat-
ing a dataset which has no concept
of record numbers, such as a query
result or an SQL table. For instance,
if your application requires the
user to specify a range of records
to be processed in some way, the
user could set two bookmarks be-
tween which records will be proc-
essed: your application would then
use DbiCompareBookMarks to deter-
mine which bookmark to start
processing from and advance the
record pointer until the other
bookmark is reached.

Table Rights And Passwords
The eOpenMode property indicates
whether the table was opened as
read/write or read only: setting a
TTable’s ReadOnly property to True
before opening the table results in
eOpenMode being set to dbiREADONLY.
Similarly eShareMode indicates
whether the table was opened for
shared or exclusive use: setting
TTable.Exclusive to True before
opening the table results in eShare-
Mode being set to dbiOPENSHARED.

Paradox tables can be assigned
passwords with associated table
privileges. There are two types of
password: the master password
and auxiliary passwords. The
master password gives a user full

24 The Delphi Magazine Issue 14

rights on the table whereas auxil-
iary passwords give a user re-
stricted rights on the table. Table 2
lists the table privileges sup-
ported. The eprvRights property
specifies the table level rights for
the user who opened the table. If
the table is not password pro-
tected (check the bProtected cur-
sor property) the user has full table
rights. The number of auxiliary
passwords can be determined
using the iPasswords property. Do
bear in mind that a cursor’s prop-
erties can only be retrieved when
the cursor/table is open, therefore
to examine a protected table’s
properties the user must first sup-
ply a password to open the table:
obviously you can’t examine the
table’s protection properties un-
less you have opened the table
with a password which bestows
privileges other than prvNone!

Un-Deleting Records
The concept of “soft deletes” is
supported by dBase tables, mean-
ing that deleted records aren’t
physically removed from the table
but are flagged as deleted and are
not displayed in the table. Deleted
records are removed from the ta-
ble only when the table is packed.
The bSoftDeletes cursor property
indicates whether the table sup-
ports soft deletes, but what use are
soft deleted records if they can’t be
seen? Well they can, by setting the
bDeletedOn cursor property. So far
we’ve just looked at getting cursor
properties but what about setting
them? An IDAPI object’s properties
can be set by calling the DbiSetProp
function:

function DbiSetProp(
 { Object handle: }
 hObj : hDBIObj;
 { Property to set: }
 iProp : Longint;
 { Property value: }
 iPropValue : Longint
): DBIResult;

hObj is a generic object handle to
which a handle for any IDAPI object
can be passed just as long as the
handle is cast as type hDBIObj.
The property we wish to set is
curSOFTDELETETON with a property

Property Name Type Description

szName DBITBLNAME Table name

iFNameSize Word Size of buffer to hold expanded file name

szTableType DBINAME Table driver type (PARADOX, DBASE, etc)

iFields Word Number of fields

iRecSize Word Record size (logical record if exltMode is
xltFIELD, else physical record)

iRecBufSize Word Record size (physical record)

iKeySize Word Key size

iIndexes Word Number of indexes

iValChecks Word Number of Paradox table validity checks

iRefIntChecks Word Number of Paradox referential integrity
constraints

iBookMarkSize Word Bytes needed to allocate a Bookmark

bBookMarkStable Bool Are bookmarks stable?

eOpenMode DBIOpenMode Table open mode: ReadOnly or ReadWrite

eShareMode DBIShareMode Table opened Exclusive or Shared

bIndexed Bool Is an index active?

iSeqNums Integer 1 indicates uses logical record sequence numbers,
0 indicates uses physical record numbers (dBase)

bSoftDeletes Bool Supports soft deletes? (dBase)

bDeletedOn Bool Can soft deleted records be seen?

iRefRange Word Not used

exltMode XLTMode Translate Mode: XLTNONE or XLTField

iRestrVersion Word Restructure version number

bUniDirectional Bool Is the cursor uni-directional (SQL only)?

eprvRights Word Table rights (depends on current password)

Dummy4 Word Used in BDE 3.0 / Delphi 2.0 only

iFmlRights Word Not used

iPasswords Word Number of Auxiliary passwords

iCodePage Word Codepage (0 if unknown, used by dBase)

bProtected Bool Is the table is protected by password?

iTblLevel Word Driver dependent table level

szLangDriver DBINAME Language driver name

bFieldMap Bool Is a field map active?

iBlockSize Word Physical file block size in Kb

bStrictRefInt Bool Is strict referential integrity used?

iFilters Word Number of filters current on the cursor

bTempTable Bool Is the table a temporary table?

iUnUsed array [0..15]
of Word;

Not used

Notes
DBITBLNAME = array [0..DBIMAXTBLNAMELEN] of Char;
DBINAME = array [0..DBIMAXNAMELEN] of Char;
DBIOpenMode = (dbiREADWRITE, dbiREADONLY);
DBIShareMode = (dbiOPENSHARED, dbiOPENEXCL);
XLTMode = (xltNONE, xltRECORD, xltFIELD);

Notes for Delphi 2.0 / BDE 3.0
Type WordBool is used instead of Bool
Type SmallInt is used instead of Integer
Type packed array[0..15] of Word is used instead of array[0..15] of Word

➤ Table 1: IDAPI cursor properties

October 1996 The Delphi Magazine 25

value of 1. The following function
call sets the bDeletedOn property
for Table1:

DbiSetProp(HDBIObj(
 Table1.Handle),
 curSOFTDELETEON, 1);

After setting this property we must
refresh the view of the table by
calling TTable.Refresh and voila: we
can now see any soft deleted
records; but how can we distin-
guish between deleted and non-
deleted records? If you cast your
keen mind back to the discussion
of record properties in last
month’s article you may remember
the bDeleteFlag property which,
oddly enough, identifies a deleted
dBase record. Deleted records
can be un-deleted by calling
DbiUndeleteRecord which takes a
cursor handle as its sole parame-
ter. Attempting to un-delete a
non-deleted record raises an
exception when called within the
Check procedure.

An Enhanced TTable
It’s time to put all we’ve learned so
far about IDAPI into practice: using
Dbi functions and IDAPI properties
we can set to work developing a
sub-classed TTable which imple-
ments all these extras. There ap-
pears to be a naming convention
for components which involves
prefixing the component name
with the vendor’s lower case in-
itials, for example, Woll2Woll’s
InfoPower components are pre-
fixed with ww. In a similar spirit
we’ll give our enhanced TTable the
name TjocTable – if you’ll please
pardon my ego!

TjocTable implements as meth-
ods those Dbi function calls cov-
ered in last month’s article: record
and cursor properties have been
surfaced as component properties.
See this month’s disk for the
source of TjocTable to which we’ll
add functionality as we cover IDAPI
properties and functions in greater
depth. Support for soft deletes has
been implemented in the Deleted
read-only property and Show-
Deleted property which calls the
SetShowDeleted property write
access method. The functionality

balance between TTable in Delphi
1.0 and 2.0 has been somewhat re-
dressed by implementing the RecNo
property. The subtle bug in Delphi
1.0’s TTable.MoveBy is worked
around by providing a MoveRelative
method which achieves the same
thing but without the limitations of
a signed integer parameter. The
new GotoRecord method enables
movement to any record number
or sequence number in the table:
just remember what I said about
sequence numbers in last month’s
article.

I’ve also implemented the prop-
erties IsProtected, PasswordCount
and TableRights, which indicate
whether the table is password pro-
tected, the number of auxiliary
passwords and the table access
rights for the user. I’ve been a little
naughty and published these prop-
erties which should be read-only
but have been made read-write (so
that they can be published) with
empty write-access methods, thus
effectively making them read-only
properties. My reason for publish-
ing these properties is pure con-
venience: you don’t have to write
code to examine the properties at
run-time.

There are other useful cursor
properties which relate to table
type and capability. The iTblLevel
property specifies the table type
version: Paradox 7.0 format tables
are level 7, Paradox 5 tables are
level 5 and so on. This property is
useful for diagnostic purposes. The
iBlockSize property specifies the
size of a table allocation block in
Kb. What effect does block size
have on a table? It is only relevant
for Paradox tables and determines
the maximum size of the table.
Here’s how: a Paradox table

contains a maximum of 64K blocks
which means that a table with 2Kb
block size can grow to a maximum
size of 128Mb or 256Mb with a 4Kb
block size. Paradox 5.0 tables can
have a maximum block size of
32Kb. Each block contains table re-
cords. Choosing a block size must
take into account storage effi-
ciency and performance consid-
erations: depending on the record
size, smaller blocks can be more
efficient but larger blocks will im-
prove performance (at the cost of
memory usage), especially where a
large number of records are con-
cerned. Furthermore, table record
size cannot exceed block size be-
cause records are not stored
across block boundaries, therefore
you may have no choice but to use
a larger block size which will be
chosen for you by the BDE when
the table is created.

A table’s block size can be set
using the IDAPI Configuration
Utility. On the Drivers page select
PARADOX and set the blocksize
parameter as a multiple of 1024 and
save the changes to IDAPI.CFG, any
Paradox tables created in future
will use the new block size. To
change an existing table’s block
size you’ll need to create a copy of
the table (with a different name)
using a TBatchMove component or
by using Database Desktop to
query out all the records in the
table to an answer table which will
have the new block size. Just
copying the table using Database
Desktop won’t do the trick.

The iRestrVersion cursor prop-
erty is a count of the number of
times a Paradox table has been
restructured and can be useful for
making sure that a large table is
packed at regular intervals to

Privilege Description

prvNONE No privileges

prvREADONLY Can read the table or field

prvMODIFY Can read and modify fields

prvINSERT Can insert records and all of the above

prvINSDEL Can delete records and all of the above

prvFULL Full rights

prvUNKNOWN Unknown rights

➤ Table 2: Paradox table/field privileges

26 The Delphi Magazine Issue 14

defragment its contents. You can
also use it to check if a table has
been restructured with excessive
frequency.

I’ve implemented the published
read-only properties RestructVer-
sion, BlockSize and TableLevel to
encapsulate the iRestrVersion,
iBlockSize and iTblLevel cursor
properties.

Copying And
Renaming Tables
It’s possible to copy and rename
tables within a database. This
saves us having to rely on a
dataset’s BatchMove method to
achieve the same result. DbiRe-
nameTable and DbiCopyTable can be
used to rename and copy tables
(see Listing 1).

Both functions require a valid
database handle with source and
destination table names, but the
driver type can be passed as nil
provided the table names have ex-
tensions, otherwise the driver type
must be either szPARADOX or szDBASE
which are string constants defined
in the DBITYPES unit. The driver
type is ignored if hDb is an SQL
database and can thus be passed
as nil. A table to be copied must be
at least read-locked beforehand, a
table to be renamed must be exclu-
sively locked. You can lock a table
using the TTable.LockTable and
UnlockTable methods:

TLockType =
 (ltReadLock, ltWriteLock);
procedure TTable.LockTable(
 LockType: TLockType);
procedure TTable.UnlockTable(
 LockType: TLockType);

To obtain an exclusive lock on a

TTable you must first set its
Exclusive property to True and
then open the table; the table must
then be closed just before the call
to DbiRenameTable otherwise a
Table is busy exception will be
raised. Neither of these two Dbi
functions can be used to change a
table’s type: a Paradox table (.DB)
cannot be renamed to a dBase
table (.DBF) or vice versa.

I’ve implemented the CopyTable
and RenameTable methods for
Delphi 1.0. Delphi 2.0 provides the
TTable.RenameTable method so only
CopyTable is implemented in Delphi
2.0, by use of the Win32 conditional
compilation flag.

Packing Tables
Packing a table generally means
that the space used by deleted re-
cords gets reclaimed and the table
gets defragmented. Specifically,
packing a dBase table removes any
soft deleted records and is
achieved with a call to the function
DbiPackTable.

To pack a Paradox table you
must call DbiDoRestructure with a
pack flag set to True. Let’s examine
these in more detail, starting
with the function prototype for
DbiPackTable:

function DbiPackTable(
 { Database handle: }
 hDb : hDBIDb;
 { Cursor: }
 hCursor : hDBICur;
 { (OR) Table name: }
 pszTableName : PChar;
 { Driver type /NULL: }
 pszDriverType : PChar;
 { Regenerate indexes: }
 bRegenIdxs : Bool
): DBIResult;

Here we have some of the usual
parameters required when dealing
with a cursor/table (the database
handle and cursor handle) as well
as null-terminated string parame-
ters which specify the table name
and table type.

If pszTableName includes a file
extension then pszDriverType can
be passed as nil, otherwise it must
be passed the predefined string
constant szDBASE. The good news is
that if hDb and hCursor are supplied
then both table name and table
type can be passed as nil which
makes life a little easier. The
bRegenIdxs parameter specifies
whether all indexes are to be
rebuilt in addition to packing the
table.

Packing Paradox tables is a little
more involved because calling
DbiDoRestructure is slightly less
straightforward, as it involves
setting up a table descriptor
record which is then passed as a
parameter to the function.

Rather than listing all the fields
in the table descriptor, we’ll just
examine those which are relevant
to our purpose of packing Paradox
tables:

CRTblDesc = record
 { TableName with optional
 path & extension: }
 szTblName : DBITBLNAME;
 { Driver type (optional): }
 szTblType : DBINAME;
 ...
 { Pack table
 (restructure only): }
 bPack : Bool;
 ...
end;

and here’s the function prototype
for DbiDoRestructure:

function DbiDoRestructure(
 { Database handle: }
 hDb : hDBIDb;
 { Number of table
 descriptors (1): }
 iTblDescCount : Word;
 { Array of table descs: }
 pTblDesc : pCRTblDesc;
 { Save to this table
 (optional): }

 { continued next page... }

function DbiRenameTable({ Rename table & family }
 hDb : hDBIDb; { Database handle }
 pszOldName : PChar; { Old name }
 pszDriverType : PChar; { Driver type /NULL }
 pszNewName : PChar { New name }
): DBIResult;

function DbiCopyTable({ Copy one table to another }
 hDb : hDBIDb; { Database handle }
 bOverWrite : Bool; { True, to overwrite existing file }
 pszSrcTableName : PChar; { Source table name }
 pszSrcDriverType : PChar; { Source driver type }
 pszDestTableName : PChar { Destination table name }
): DBIResult;

➤ Listing 1

October 1996 The Delphi Magazine 27

 pszSaveAs : PChar;
 { Keyviol table name
 (optional): }
 pszKeyviolName : PChar;
 { Problems table name
 (optional): }
 pszProblemsName : PChar;
 { Analyze restructure: }
 bAnalyzeOnly : Bool
): DBIResult;

The only parameters we need to
specify are hDB, iTblDescCount
which is always 1 and the pointer
to the table descriptor, pTblDesc;
the others can be passed as nil or
False as appropriate. If you wish to
save the restructured table to a
different name you can specify the
table name in pszSaveAs.

Before calling this function we
must first initialise the table de-
scriptor with the table name, table
type and bPack set as True. Unlike
DbiPackTable, the table to be
restructured must be closed be-
fore calling DbiDoRestructure, oth-
erwise the function will fail and
return a table busy result code.

Before calling DbiPackTable or
DbiDoRestructure the table must be
opened exclusively. See the Pack
and PackPdoxTable methods to see
how these functions are used.
Conveniently, DbiDoRectructure
also rebuilds the table’s indexes
which leads us on to...

Rebuilding Table Indexes
It’s not necessary to call on
DbiDoRestructure or DbiPackTable
just to rebuild a table’s indexes,
IDAPI provides function calls
specially for the purpose. First let’s
discuss table indexes and
why/when they need to be rebuilt.

Table indexes are just like book
indexes – they help to locate a par-
ticular field value much faster then
using a sequential table scan. An
index is basically a type of lookup
table where each record contains a
particular field value (or field val-
ues for a composite or multi-field
index) and its associated record
positions within the indexed table.

So if you’re searching for the first
record in a customer address table
where PostCodeArea = ’W1’, rather
than scanning each record, the
index is used to locate the value

’W1’ and then the first associated
record position is retrieved from
the index record. There are two
types of index: maintained and
non-maintained. Strangely enough,
maintained indexes are updated as
and when the table is updated
whereas non-maintained indexes
remain static so there’s obviously
some (usually small) performance
overhead when using maintained
indexes.

Delphi’s TTable maintains a list of
indexes in its IndexDefs property of
type TIndexDefs: an array of
TIndexDef objects, each of which
encapsulates a single table index.
However, only maintained indexes
are stored in IndexDefs, non-
maintained indexes are ignored, as
you can readily see from the source
for TTable’s UpdateIndexDefs
method and also from the list of
available indexes for TTable’s
IndexName property in the Object
Inspector.

Fortunately for us this does not
mean that non-maintained indexes
cannot be used in Delphi applica-
tions: simply assigning the name of
the non-maintained index to the
IndexName property of a TTable will
make that index active, but beware
that non-maintained active indexes
render the table view read-only.
Why is this the case? Well it actu-
ally makes perfect sense: if the
active index is non-maintained
then it’ll become out of date as
soon as the table is modified and
obviously that can’t be allowed to
happen.

What if a non-maintained index is
created and then the table is
modified when that index in not
active – what happens then? The
non-maintained index will become
out of date and any attempt to
make it the active index will fail
with an Index is out of date excep-
tion which necessitates rebuilding
the index.

IDAPI provides two functions for
rebuilding indexes: DbiRegenIndex
and DbiRegenIndexes which regen-
erate a single specified index and
all indexes respectively. The
DbiRegenIndexes function takes just
a cursor handle as a parameter
whereas DbiRegenIndex is a little
more involved:

function DbiRegenIndex(
 { Database handle: }
 hDb : hDBIDb;
 { Cursor (OR): }
 hCursor : hDBICur;
 { Table name: }
 pszTableName : PChar;
 { Driver type: }
 pszDriverType : PChar;
 { Index name: }
 pszIndexName : PChar;
 { Index tagname: }
 pszIndexTagName : PChar;
 { Index number: }
 iIndexId : Word
): DBIResult;

We’ve come across hDb and hCursor
before, as well as pszTableName and
pszDriverType, which can both be
passed as nil if hCursor is passed.
This makes sense as hCursor obvi-
ously identifies the table in ques-
tion. The index name, index tag
name and index ID parameters
identify the index to be rebuilt. The
index name or index ID identifies a
Paradox index, the index tag name
identifies a dBase index.

So how do we determine the pa-
rameters needed to call this func-
tion? Well the first two are easy
enough, we can pass both the table
name and driver type as nil and
the index name (or tag name for
dBase tables) we can retrieve from
the relevant TIndexDef of the
TTable’s IndexDefs property. But
what about the index ID? We can’t
use the array position of the speci-
fied TIndexDef in the IndexDefs
property because that’s the index
sequence number, not the index ID.
But surely if we’ve identified the
index using the index name or tag
name we don’t care what we pass
as iIndexID? That’s true, but we can
simplify matters by calling the
DbiGetIndexDesc function to re-
trieve the index properties of an
index specified by a particular
sequence number:

function DbiGetIndexDesc(
 { Cursor handle: }
 hCursor : hDBICur;
 { Index number: }
 iIndexSeqNo : Word;
 {Returned index description:}
 var idxDesc : IDXDesc
): DBIResult;

28 The Delphi Magazine Issue 14

The index properties are returned
in the index descriptor idxDesc of
type IDXDesc, shown in Listing 2,
from which we retrieve the index
name, index tag name and index ID
to use with DbiRegenIndex without
worrying whether we should pass
the index name, tag name or ID
based on the table type.

Both DbiRegenIndexes and DbiRe-
genIndex require that the table is
opened exclusively. SQL table
indexes cannot be rebuilt using
these functions. I’ve implemented
three more TjocTable methods for
rebuilding indexes: RebuildIn-
dexes, RebuildIndex and Rebuild-
NamedIndex. It’s not possible to use
RebuildIndex or RebuildNamedIndex
to rebuild non-maintained indexes,
you must use RebuildIndexes
instead.

Other Useful IDAPI Functions
Let’s check out some further useful
Dbi functions. DbiSaveChanges com-
mits all table changes to disk thus
improving the safety of a system
prone to power failures etc. But
that’s not the only good reason to
call this function.

Emptying a table using the
method TTable.EmptyTable, which
calls DbiEmptyTable, actually de-
letes the table from disk after bor-
rowing the table structure with
which a new empty copy of the
table is created. The problem is
that the new empty table exists
only in IDAPI’s buffers until they’re
flushed to disk: that’s where
DbiSaveChanges comes in. I strongly
recommend that this function be
called immediately after emptying
a table before a system failure
occurs and the table is lost.
DbiSaveChanges takes a cursor han-
dle as its sole parameter and has
been implemented in TjocTable as
the Flush method.

Whilst we’re on the topic of sav-
ing table changes, the function
DbiUseIdleTime allows the BDE to
carry out background tasks such
as flushing its buffers to disk. One
dirty buffer (ie the contents of the
buffer have changed) is flushed to
disk for each call of this function. If
there are no dirty buffers to be
flushed then the function returns
immediately.

DbiUseIdleTime can be called on
a TTimer event though the easiest
way is to call the function in an
Application.OnIdle event handler,
although I recommend that you use
either DbiSaveChanges or Dbi-
UseIdleTime in your application
(not both, as this can lead to exces-
sive disk writes which will slow the
system).

We can check to see whether a
table is shared by using a call to
DbiIsTableShared:

function DbiIsTableShared(
 hCursor: hDBICur;
 var bShared: Bool):
 DBIResult;

Obviously, if a TTable is opened
with Exclusive set to True then the
table is not shared.

We can also check the number of
cursors open on a particular table
using a call to the function
DbiGetTableOpenCount:

function DbiGetTableOpenCount(
 { Database: }
 hDb : hDBIDb;
 { Table name: }
 pszTableName : PChar;
 { Driver type: }
 pszDriverType : PChar;
 { returned number
 of cursors: }
 var iOpenCount : Word
): DBIResult;

This can be useful for checking if a
table is busy before attempting to
rename it or restructure it.

Both DbiIsTableShared and
DbiGetTableOpenCount have been
implemented in TjocTable as the
IsShared and OpenCount properties.

Finally, for all you client/server
developers out there who might be
feeling a bit left out because this
article has so far only discussed
local table issues, the function
DbiGetTranInfo can tell us if a
database transaction is currently
active:

function DbiGetTranInfo(
 { Database handle: }
 hDb : hDBIDb;
 { Transaction handle: }
 hXact : hDBIXact;
 { Transaction info: }
 pxInfo : pXInfo
): DBIResult;

The transaction info record is of
type XInfo:

XInfo = record

 exState : eXState; {xsActive, xsInactive}

 eXIL : eXILType; {Xact isolation level}

 uNests : Word; { Xact children }

end;

Because IDAPI doesn’t support
nested transactions we’re not
required to pass a transaction
handle, just the database handle, in
a call to DbiGetTranInfo. The

IDXDesc = record
 szName : DBITBLNAME; { Index name }
 iIndexId : Word; { Index number }
 szTagName : DBINAME; { Tag name (for dBASE) }
 szFormat : DBINAME; { Optional format (BTREE, HASH etc) }
 bPrimary : Bool; { True, if primary index }
 bUnique : Bool; { True, if unique keys }
 bDescending : Bool; { True, for descending index }
 bMaintained : Bool; { True, if maintained index }
 bSubset : Bool; { True, if subset index }
 bExpIdx : Bool; { True, if expression index }
 iCost : Word; { Not used }
 iFldsInKey : Word; { Fields in the key (1 for Exp) }
 iKeyLen : Word; { Phy Key length in bytes (Key only) }
 bOutofDate : Bool; { True, if index out of date }
 iKeyExpType : Word; { Key type of Expression }
 aiKeyFld : DBIKEY; { Array of field numbers in key }
 szKeyExp : DBIKEYEXP; { Key expression }
 szKeyCond : DBIKEYEXP; { Subset condition }
 bCaseInsensitive : Bool; { True, if case insensitive index }
 iBlockSize : Word; { Block size in bytes }
 iRestrNum : Word; { Restructure number }
 iUnUsed : array [0..15] of Word;
end;

➤ Listing 2: The index descriptor type

October 1996 The Delphi Magazine 29

TransActive function implemented
in TJTABLE.PAS (on the disk) de-
termines whether a TDatabase has
an active transaction.

The TESTJTAB demo application
(Figure 1 and excerpts in Listing 3)
shows off TjocTable’s capabilities.
Any table can be opened by select-
ing from a combination of the data-
base and table names drop-down
lists. You can enter a record num-
ber to move to, or the number of
records to move by into the Input

➤ Figure 1: The TESTJTAB application

➤ Facing Page
Listing 3: Testjtab source code

edit box. The status bar displays
the record number and various
other information about the
current table/record such as
whether the table is shared or the
record deleted. For SQL tables a
Transaction menu appears, from
which transactions can be started,
committed or rolled back; the
current transaction state is dis-
played in the status bar. The
TjocTable source is on the disk too
of course.

In the next article we’ll look at
the relatively undocumented topic
of record and table locking, as well
as in-memory tables and their uses.

John O’Connell is a freelance
software consultant and devel-
oper specialising in Delphi and
database application develop-
ment. He can be reached via email
on 73064.74@compuserve.com

Copyright 1996 John O’Connell.
All rights reserved.

30 The Delphi Magazine Issue 14

unit Jtabtst;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages,
 Classes, Graphics, Controls, Forms,
 Dialogs, ExtCtrls, DBCtrls, Grids, DBGrids,
 DB, DBTables, Menus, StdCtrls,
 TJTable, DbiTypes, DbiProcs;

type
 TMainForm = class(TForm)
 DataSource1: TDataSource;
 DBGrid1: TDBGrid;
 DBNavigator1: TDBNavigator;
 MainMenu1: TMainMenu;
 File1: TMenuItem;
 Showdeleted1: TMenuItem;
 Moveby1: TMenuItem;
 Gotorecord1: TMenuItem;
 Undelete1: TMenuItem;
 Toolbar: TPanel;
 Edit1: TEdit;
 Label1: TLabel;
 Tables: TComboBox;
 Databases: TComboBox;
 Msg: TPanel;
 Table1: TjocTable;

 ...
 SEE THIS MONTH’S DISK FOR LINES OMMITTED
 HERE DUE TO LACK OF SPACE
 ...

 private
 { private declarations }
 public
 { public declarations }
 end;

var
 MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.Undelete1Click(Sender: TObject);
begin
 Table1.UndeleteRecord;
end;

procedure TMainForm.Moveby1Click(Sender: TObject);
begin
 Table1.MoveRelative(StrToInt(Edit1.Text));
end;

procedure TMainForm.Gotorecord1Click(Sender: TObject);
begin
 Table1.GotoRecord(StrToInt(Edit1.Text));
end;

procedure TMainForm.Showdeleted1Click(Sender: TObject);
begin
 ShowDeleted1.Checked := not ShowDeleted1.Checked;
 Table1.ShowDeleted := ShowDeleted1.Checked;
end;

procedure TMainForm.Exit1Click(Sender: TObject);
begin
 Close;
end;

procedure TMainForm.DataSource1DataChange(
 Sender: TObject; Field: TField);
begin
 with Table1 do begin
 Msg.Caption := IntToStr(RecNo) + ’ ’;
 if Deleted then
 Msg.Caption := Msg.Caption + ’ [Deleted] ’;
 if IsShared then
 Msg.Caption := Msg.Caption + ’ [Shared] ’;
 if TransActive(Table1.Database) then
 Msg.Caption := Msg.Caption + ’[Transaction
active]’;
 end;
end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
 Session.GetAliasNames(Databases.Items);
 Table1.Open;
 Application.OnIdle := DoIdle;

 Transaction1.Visible := Table1.Database.IsSQLBased;
end;

procedure TMainForm.TablesChange(Sender: TObject);
begin
 Table1.Close;
 Table1.DatabaseName := Databases.Text;
 Table1.TableName := Tables.Text;
 Table1.Open;
 Transaction1.Visible := Table1.Database.IsSQLBased;
end;

procedure TMainForm.DatabasesChange(Sender: TObject);
begin
 Session.GetTableNames(
 Databases.Text, ’’, True, False, Tables.Items);
end;

procedure TMainForm.Packtable1Click(Sender: TObject);
begin
 Table1.Close;
 Table1.Exclusive := True;
 Table1.Open;
 Table1.Pack;
end;

procedure TMainForm.Copytable1Click(Sender: TObject);
begin
 Table1.Close;
 Table1.Exclusive := True;
 Table1.Open;
 Table1.CopyTable(’DAVEY’);
end;

procedure TMainForm.Renametable1Click(Sender: TObject);
begin
 Table1.Close;
 Table1.Exclusive := True;
 Table1.Open;
 Table1.RenameTable(’COPIED’);
end;

procedure TMainForm.Savechanges1Click(Sender: TObject);
begin
 Table1.Flush;
end;

procedure TMainForm.Info1Click(Sender: TObject);
var
 MsgText: string;
begin
 with Table1 do begin
 MsgText :=
 ’Open cursors = ’ + IntToStr(OpenCount) + #10 +
 ’Table level = ’ + IntToStr(TableLevel) + #10 +
 ’Block size = ’ + IntToStr(BlockSize)+’K’#10#10+
 ’Table has been restructured ’ +
 IntToStr(RestructVersion) + ’ times’;
 if IsProtected then
 MsgText := MsgText +
 #10#10’Table is protected and has ’ +
 IntToStr(PasswordCount) + ’ auxiliary passwords’;
 end;
 MessageDlg(MsgText, mtInformation, [mbOK], 0);
end;

procedure TMainForm.DoIdle(
 Sender: TObject; var Done: Boolean);
begin
 DbiUseIdleTime;
end;

procedure TMainForm.Begin1Click(Sender: TObject);
begin
 Table1.Database.StartTransaction;
 if TransActive(Table1.Database) then
 Msg.Caption := Msg.Caption + ’[Transaction active]’;
end;

procedure TMainForm.Commit1Click(Sender: TObject);
begin
 Table1.Database.Commit;
 Table1.Refresh;
end;

procedure TMainForm.Rollback1Click(Sender: TObject);
begin
 Table1.Database.Rollback;
 Table1.Refresh;
end;

end.

October 1996 The Delphi Magazine 31

	Bookmarks
	Table Rights And Passwords
	Un-Deleting Records
	An Enhanced TTable
	Copying And Renaming Tables
	Packing Tables
	Rebuilding Table Indexes
	Other Useful IDAPI Functions

